
Computer Standards & Interfaces 36 (2014) 711–722

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i
Secure Tropos framework for software product lines
requirements engineering
Daniel Mellado a,⁎, Haralambos Mouratidis b, Eduardo Fernández-Medina c

a Spanish Tax Agency, Large Taxpayers Department, IT Auditing Unit, Paseo de la Castellana 106, 28046 Madrid, Spain
b School of Architecture, Computing and Engineering, University of East London, 4-6 University Way, Docklands, E16 2RD London, UK
c GSyA Research Group, University of Castilla-La Mancha, Information Systems and Technologies Department, Paseo de la Universidad 4, 13071 Ciudad Real, Spain
⁎ Corresponding author.
E-mail addresses: damefe@esdebian.org (D. Mellado),

(H. Mouratidis), Eduardo.FdezMedina@uclm.es (E. Fernán

0920-5489/$ – see front matter © 2014 Elsevier B.V. All ri
http://dx.doi.org/10.1016/j.csi.2013.12.006
a b s t r a c t
a r t i c l e i n f o
Available online 31 December 2013
Keywords:
Security requirements
Product lines
Requirements engineering
Security requirement engineering
Secure Tropos
Security and requirements engineering are two of themost important factors of success in the development of a
software product line (SPL). Goal-driven security requirements engineering approaches, such as Secure Tropos,
have been proposed as a suitable paradigm for elicitation of security requirements and their analysis on both a
social and a technical dimension. Nevertheless, goal-driven security requirements engineering methodologies
are not appropriately tailored to the specific demands of SPL, while on the other hand specific proposals of SPL
engineering have traditionally ignored security requirements. This paper presents work that fills this gap by pro-
posing “SecureTropos-SPL” framework.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Information systems undoubtedly play an important role in today's
society and more and more are at the heart of critical infrastructures.
It iswidely accepted in the security research literature [14], that security
is of particular importance to such information systems and that is es-
sential for security to be considered from the early stages of software
development for an effective management of security issues. Although
security is traditionally considered a technical issue; security is, in fact,
a two-dimensional problem, which involves technical as well as social
challenges [18].

At the same time, in recent years, many public and private organiza-
tions are making the strategic decision to adopt a software product line
(SPL) approach to the production of software-intensive systems [13].
Since SPL strategy has proven successful at reducing both time-to-
market and development costs [4,6] and obtaining both high-quality in-
formation systems and higher productivity [13]. The SPL development
paradigm is based on increasing the reuse of all types of artefacts, thanks
to the combination of coarse-grained componentswith a top-down sys-
tematic approach in which software components are integrated into a
high-level structure.

Proper analysis and understanding of security requirements are im-
portant because they help us to discover any security or requirement
defects or mistakes in the early stages of development, in fact the
long-standing credo of requirements engineering reads: “If you don't
know what you want, it's hard to do it right” [7]. In SPL development
it is even more important given that a weakness in security owing to a
H.Mouratidis@brighton.ac.uk
dez-Medina).

ghts reserved.
mistake in a security requirement can cause problems throughout the
products of a product line. Therefore, the elicitation of security require-
ments for SPL is a challenging task, mainly due to the varying security
properties required in different products, for the diversity of market
segments, and the constraint of simultaneously maintaining the cost-
effective principle of the SPL paradigm.

Nevertheless, there is lack of approaches in the security requirements
literature [14], which would support the elicitation and analysis of both
social and technical security requirements from the early stages of the
SPL development process. On one hand current SPL approacheswhich in-
clude partial support for security requirements engineering do not man-
age both dimensions of security (social and technical dimension); on
the other hand, proposals that manage both the technical and the social
dimensions of security (such as Secure Tropos) are not tailored enough
to support the SPL development paradigm.

In this paper, we propose SecureTropos-SPL, an extension of some
stages of Secure Tropos [17] methodology to fill this gap. Our work ini-
tially aligns SPL concepts to Secure Tropos concepts, and secondly it re-
defines the Secure Tropos process, so that we proposed a risk-driven
goal-based process to manage security requirements variability at
both Early Requirements and Late Requirements stages of Secure Tropos
in SPL development. Finally, it is proposed the extension of Secure
Tropos metamodel and language to support security risks and SPL con-
cepts such as ‘variability’ and its modelling, that is SPL modelling with
Secure Tropos, in order to manage at the same time both the technical
and the social dimensions of SPL security and also taking into account
the security risks.

This paper is structured as follows. Section 2 describes the back-
ground information about Secure Tropos and SPL needed for a better
understanding of the proposal. In Section 3 the relatedwork is summed
up. Section 4 outlines the core elements of SecureTropos-SPL, our

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2013.12.006&domain=f
http://dx.doi.org/10.1016/j.csi.2013.12.006
mailto:damefe@esdebian.org
mailto:damefe@esdebian.org
mailto:Eduardo.FdezMedina@uclm.es
http://dx.doi.org/10.1016/j.csi.2013.12.006
http://www.sciencedirect.com/science/journal/09205489

712 D. Mellado et al. / Computer Standards & Interfaces 36 (2014) 711–722
proposed extensions to Secure Tropos, while Section 5 illustrates with
the aid of an example the applicability of these extensions to Secure
Tropos. Finally, Section 6 discusses contributions and future work.

2. Secure Tropos and software product lines requirements
engineering basics

2.1. Overview of Secure Tropos

Secure Tropos [17] is a security-oriented extension of the widely
known requirements engineeringmethodology Tropos [5]. It introduces
a number of security-related concepts to the Tropos methodology.
Tropos (and as a result Secure Tropos) methodology is mainly based
on four stages:

• Early requirements analysis aimed at defining and understanding a
problem by studying its existing organizational setting.

• Late Requirements analysis conceived to define the system-to-be in the
context of its operational environment.

• Architectural design, that deals with the definition of the system global
architecture in terms of subsystems; and the

• Detailed design phase, aimed at specifying each architectural compo-
nent in further detail, in terms of inputs, outputs, control and other
relevant information.

Themain uniquepoints of themethodology compared to other secu-
rity oriented software engineering approaches are that

• Social issues of security are analysed during the early requirements
stage;

• Security is considered simultaneously with the other requirements of
the system-to-be; and

• The methodology supports not only requirements stages but also
design stages.

In this paper we will extend Secure Tropos in order to manage
security requirements variability at both Early Requirements and Late
Requirements stages of Secure Tropos in SPL development.

2.2. Software product lines requirements engineering basics

A software product line (SPL) is a set of software-intensive systems
sharing a common, managed set of features [10] which satisfy the
specific needs of a particular market segment or mission and which is
developed from a common set of core assets in a prescribed way [6].
Exploiting commonalities between different systems is at the heart of
Software Product Line Engineering. These commonalities and differ-
ences are described by using the core concept in Software Product
Line Engineering: variability. Variability describes the variations in
both functional and non-functional features in the product line. Features
are either a commonality or a variation. Variability management is the
activity in product line development that aims to model a product line
as a whole and to customise or change specific product line members.
Its importance signifies that it can actually be seen as the key feature
that distinguishes product line development from other approaches to
software development [23]. In common language use the term variabil-
ity refers to the ability or the tendency to change, but in this case this
change does not occur by chance but is brought about deliberately. For
example: an electric bulb can be lit or unlit, or a software application
can support different languages. Variability in SPL is therefore variability
that is modelled to enable the development of customised applications
by reusing predefined, adjustable artefacts. The variability of a SPL thus
distinguishes different applications of the product line. In contrast to
variability, the commonality in SPL denotes features that are part of
each application in exactly the same form. This means that it is often
possible to decide whether a feature is a variable of the SPL or whether
it is common to all software product applications, and thus adds to the
commonality.
The software product line engineering paradigm differentiates two
processes: domain engineering and application engineering [21]. Do-
main engineering is the process of SPL engineering inwhich commonal-
ity and variability of the product line are defined and carried out.
According to [21] the domain requirements engineering sub-process
encompasses all activities for eliciting and documenting the common
and variable requirements of the product line. Application engineering
is the process of SPL engineering in which the applications of the prod-
uct line are built by reusing domain artefacts and exploiting product line
variability. Product line requirements define the products and their
common and variable features in the product line. Requirements that
are common to the entire family, which constitute the product line re-
quirements and an important core asset, should be managed separately
from requirements that are particular to a subset of the products (or to a
single product), which must also be managed. The SPL scope binds the
products included in the product line: product line requirements refine
the scope by more precisely defining the characteristics of the products
in the product line. Both concepts are closely coupled and evolve
together [6].
3. Related work

Several attempts have also recently been made to define SPL archi-
tectures for security, such as the approach of Faegri et al. [8] and the ap-
proach of Arciniegas et al. [1], although their work is focused on tackling
securitymanagement in SPL engineering, their approach is applicable to
the latest stages of the development process rather than security re-
quirements, because aremore orientated towards the software solution
than to security requirements elicitation and definition or include only a
few security requirements tasks, but without managing all the security
requirements artefacts (assets, threats, etc.). The Security Requirements
Engineering Process for Software Product Lines (SREPPLine) [15] has
been recently proposed to support security requirements analysis for
SPL. However, SREPPLine fails to consider both the social and technical
dimensions of security and it also does not support the parallel model-
ling of security requirements and the rest of the security elements and
their variability with a homogeneous modelling language, as our ap-
proach does.

Themost relevant “generic” security requirements related proposals
were systematically reviewed in [14] (Secure Tropos included). Thanks
to this review that we have already done, it can be observed that these
proposals neither are sufficiently specific nor are they tailored to the SPL
development paradigm, principally because they do not deal with secu-
rity requirements variability, which is an essential aspect. Moreover,
they do not provide a methodological tailored approach for SPL engi-
neering, that is, they do not have specific activities or language to man-
age the security variability needed by the SPL development paradigm.
Therefore, they are not appropriate enough tomanage security require-
ments in SPL, as it was also explained in [15].

Having said this, each of these approaches makes highly impor-
tant contributions to security requirements engineering in SPL.
In addition, some of their features are used as the basis of our
proposal.
4. SecureTropos-SPL: Secure Tropos framework for software
product lines

In this section,we present themajor principles of our proposal. First-
ly, we outline the core of our approach. Next we align SPL concepts to
Secure Tropos concepts, and then it is redefined the Secure Tropos
process at both Early Requirements and Late Requirements phases of
Secure Tropos. Finally, it is proposed an extension of Secure Tropos lan-
guage in order to deal with the variability needed for SPL engineering
and to manage security risks elements.

713D. Mellado et al. / Computer Standards & Interfaces 36 (2014) 711–722
4.1. Overview of our approach

Our approach ‘Secure Tropos–SPL’, as shown in Fig. 1, is based on
Secure Tropos and therefore on Tropos methodology. We propose an
extension to Secure Tropos to support SPL security requirements engi-
neering based on security goals and driven by security risks.

The aim of our approach is to minimize both knowledge of the nec-
essary security and risks concepts and security expert participation dur-
ing SPL product development, so that this approach provides support
for the elicitation and analysis of both social and technical security re-
quirements following security risks criterion from the early stages of
the SPL development process.

Consequently, we aligned concepts of Goal Driven SPL Engineering
with Secure Tropos concepts. Furthermore, we have redefined Secure
Tropos process by means of introducing new tasks which deal with
the variability of the security requirements, aswell aswe have specified
these new tasks and activities of the process using the OMG standard
SPEM 2.0 [20]. As shown in Fig. 1, we have integrated the Domain and
Application Requirements Engineering activities in both the Early and
Late Requirements stages, as well as we suggested a new task ‘Variability
Analysis’ which is carried out during Domain Requirements Engineering
Activity in order to manage the variability of SPL, so that the common
and variable security goals are identified and modelled. We have also
proposed twonew tasks: ‘Variability Instantiation’ and ‘Sec-deltas Analysis’,
which are performed in Application Requirements Engineering Activity and
in these tasks the set of domain security goals are instantiated aswell as it
is analysed and modelled the security specific requirements of the appli-
cation.Moreover,we introduced security risk related tasks based on secu-
rity requirements management approaches (such as Magerit [12],
methodology officially recognised by NATO at the 9th NATO cyber de-
fense workshop in 2008 and by OECD [19]) with the aim of introducing
risk criterion in the security requirements elicitation, so that our approach
not only consider both the social and technical dimensions of security but
also it does take into account the security risk in SPL engineering. More-
over, ourfinal aim is also to align theworkwith relevant “industrial” stan-
dards or guidelines (as for exampleMagerit,…) andmethods to drive the
use of the work in industry.

In Fig. 1 we have outlined the main components of our proposed
framework as a high level abstraction diagram of components. In the
Fig. 1. Secure Tropos
left side of the figure, it is depicted how our framework fits in the SPL
development paradigmand in the requirements engineeringmethodol-
ogy Tropos [5]. In the top of the figure, we have sum up the key
languages, tools or techniques that our framework is based on, such as
SPEM 2.0 to specify the process, SecTroModelling Tool tomodel accord-
ing Secure Tropos specification, and security risk assessment ap-
proaches (as Magerit, CRAMM or Octave, etc.). In the bottom of the
figure, it is shown the extension of Secure Tropos metamodel and lan-
guage as it is explained next as a subsection, so that we have added
new entities and relationships to support variability and risk elements
in two sub-parts of the Secure Troposmetamodel related to the Security
Enhanced Actor Model (SEAM) and Security Enhanced Goal Model
(SEGM). Finally, in the centre of the figure, we represent the core activ-
ities of the process proposed in our framework.

4.2. Aligning Secure Tropos with SPL concepts

One of the first challenges we faced, was the alignment between Se-
cure Tropos concepts and SPL concepts. Firstly, we had to introduce the
concept of variability in Secure Tropos, due to the fact that variability
management is at the heart of the SPL paradigm.

Secure Tropos is a goal driven security requirements engineering
methodology, in which a goal represents actors' strategic interests and
a secure goal represents the strategic interests of an actor with respect
to security. Secure goals aremainly introduced to achieve possible secu-
rity constraints that are imposed to an actor or exist in the system. An
actor is defined as an entity that has strategic goal. In Secure Tropos
security constraints define the system's security requirements; they are
security conditions imposed to an actor that restricts achievement of
an actor's goals, execution of plans or availability of resources. In addi-
tion, Secure Tropos defines secure dependencies. A secure dependency
introduces security constraint(s) that must be fulfilled for the depen-
dency to be satisfied.

In SPL engineering (but above all in goal driven SPL engineering),
since a goal could provide the rationale for variations in domain require-
ments [11], we used it as a discriminator that enables us to identify com-
mon and variant goals and hence secure goals in Secure Tropos. Thus,
the common (default option), optional and/or alternative goals in SPL
can be modelled in Secure Tropos by means of a Variability Dependency
— SPL overview.

1 Asset: Anything that has value to the organization (ISO/IEC 13335).

714 D. Mellado et al. / Computer Standards & Interfaces 36 (2014) 711–722
relationship (a new relationship of Secure Tropos explained in next
Subsection 4.3 and shown in [16]).

Moreover, in Secure Tropos, the precise definition of how a secure
goal can be achieved is given by a secure plan, which is defined as a par-
ticular way for satisfying a secure goal. Usually, a secure plan or goal
needs a secure resource, which is an informational entity that is needed
for the achievement of a secure goal or the fulfilment of a secure plan.
Therefore, these entities of Secure Tropos (security constraint, secure
plan, secure resource) could be part of variants of a SPL because they
are related to goals and secure goals which are variations of a SPL, so
that they are modelled by means of a variability dependency relation-
ship between them and an actor, by means of the ‘Variation’ entity
(a new entity of Secure Tropos explained in the next Subsection 4.3
and shown in [16]).

We have also had to partially adapt the concept of actor of Secure
Tropos, so that a SPL is a special type of a general actor and so as to dur-
ing Application Engineering in SPL the different products/applications
instantiated from the SPL are modelled as actors that reuse from the
SPL-actor the domain common requirements, but also each application
of the SPL will model their security specific requirements (security
requirements are security related restrictions to the functionalities of
the system) or each application will model the sec-deltas [15]. Sec-
deltas occur when stakeholder security requirements cannot be
completely satisfied by security domain requirements artefacts.

A second challenge was to integrate the twomain activities related to
requirements engineering in SPL engineering with Secure Tropos process
(which is more detailed in the next Subsection 4.4). According to the def-
initions of these activities (previously explained in Section 2), and taking
into account the development stages of Secure Tropos, we have integrat-
ed the Domain and Application Requirements Engineering activities in both
the Early and Late Requirements stages, although in Application Require-
ments Engineering activity during the Early Requirements stage it will
only be done the inheritance of the common requirements of the SPL.
That is, for the development of a SPL during the Domain Requirements
Engineering activity we will carry out Early and Late Requirements stages
analyses, initially by defining and understanding the SPL settings and
then by defining the SPL-to-be in the context of its operational environ-
ment (modelling common, alternative and optional entities). While for
the instantiation of the products/applications of the SPL during the
Application Requirements Engineering activity we will inherit the early re-
quirements from the SPL. Thus, during Application Engineering it will only
be needed to carry out the Late Requirements Engineering stage of Se-
cure Tropos, because is in this stage when each instantiated product/
application from the SPL is defined, in the context of its operational envi-
ronment, and when sec-deltas will be modelled.

Therefore, through the above discussed alignments and adaptations
of concepts as well as the extensions of part of the Secure Tropos
metamodel related to. Security Enhanced Actor Diagram (SEAD) and
Security Enhanced Goal Diagram (SEGD) (explained in more detail in
following Subsection 4.3), we are able to capture and model security,
with Secure Tropos, the security requirements of a SPL along with the
variability of their related entities.

4.3. Secure Tropos metamodel and language extension

Most existing variabilitymanagement approaches in SPL, such as, for
example: [2,22,24] are focused on addressing functional requirements
variability and they do not manage the technical and the social dimen-
sions of security of SPL. Hence, in this work with the aim of filling this
gap, we are interested in two sub-parts of the Secure Troposmetamodel
related to the Security Enhanced Actor Model (SEAM) and Security En-
hancedGoalModel (SEGM), so thatwe have extended these parts of the
metamodel in order to provide support to the variability management
(which is the core of SPL engineering) in Secure Tropos metamodel as
well as to the security risk assessment from the early stages of SPL
development.
The SEAM defines a set of actors along with their secure dependen-
cies and any security constraints that might be imposed to these actors.
The SEGM assists to analyse the security issues of a particular actor by
understanding the implications that Security Constraints, identified in
SEAM, have in that particular actor.

The extension to SEAM is shown in Fig. 2. We have added the ‘Vari-
ability Dependency’ relationship, which inherits from ‘Dependency’ and
fromwhich ‘Secure Dependency’ inherits, so that variability ofDependum
entities could be modelled. Furthermore, through the attribute
‘Depender’ or ‘Dependee’, developers can specify the “owner” of the var-
iant. Secure Dependency relationships are ‘Common’ variants by de-
fault. Hence, through this new ‘Variability Dependency’ relationship it
is possible to state variability dependencies between all the entities sup-
ported by Tropos (i.e. goals, plans, actors, resources, and security con-
straints) and specify if they are ‘common’ (default), ‘optional’ or
‘alternative’ variability relationships. Nevertheless, the variability of
the entities will start from the identification and specification of the
goals' variability, as it is the core of the variability because our frame-
work is a goal-driven one.

Furthermore, we have inserted the ‘Asset value’ as an attribute of the
‘Security Constraint’, ‘Plan’, ‘Goal’ and ‘Resource’ elements in order to re-
cord the value of the business and system/SPL assets1 following a stan-
dardized scale from 0 to 10 in accordance with the Magerit [12] risk
assessment methodology and agreed with the stakeholders. Through
this new attribute ‘Asset value’ in the ‘Secure’ elements it is possible
that each asset has a ‘value’ according to his related goal and/or secure
goal. We based our asset analysis on the definition of an asset as any-
thing that has value to the organization [9], that is, these assets are the
resources in the information systems of the SPL, or these which are re-
lated to them which are necessary for the organization to operate cor-
rectly and to achieve its goals (both tangible or intangible). Thus, as
we had identified that in Secure Tropos the entities: plan, resource,
goal and actor; are used to model both business and systems/SPL assets.
There could also be different standardized categories of assets (such as
the environment, information systems, services, components and infor-
mation or data) to make easier and more systematic the assets valua-
tion. Dependencies between assets could also exist, so that valuations
are propagated through the dependency tree of assets and therefore
only the higher assets in the dependency tree have to be explicitly val-
ued, the other assets would have the ‘accumulated value’ (which is de-
fined as the highest value among it and any ones above). For example,
assume that the actor “company ECMA” has a goal “provide payment
by credit card service”which is an asset, and constrained by the Security
Constraint “Keep data confidentiality”, so that it is also related to the
softgoal “confidentiality”, and the Security Constraint is assigned an
‘asset value’ of 7. This asset depends on the secure resource “web-serv-
er-SSL” (which is also an asset), due to the relations of the meta-
model that implies the “web-server-SSL” ‘asset value’ will be at least 7
(the accumulated value) according to the risk assessmentmethodology
we followed (Magerit [12]).

In order tomanage the variability of the SPL and the instantiated ap-
plications from the SPL at the level of a particularActor, we extended the
SEGMof Secure Tropos. The extension shown in Fig. 3 consists of adding
an entity named ‘Variation’ which could have as value: ‘common’,
‘optional’ or ‘alternative’, andwhich is related to the entitiesGoal, Security
Constraint, Plan and Resource by means of a relationship ‘is part of’ and
which an Actor could have several Variation. It represents the variation
object and defines a concrete type of variation (“how does it vary?”).

The starting points of the variability modelling according to our pro-
posed process in next section are the goals and next secure goals, be-
cause if the variability and traceability links are carefully established,
they allow us to decide what security goals are needed to maintain
the security aligned with the goals of the SPL or product/application

Fig. 2. Extension to SEAM (‘SEAM–SPL’).

715D. Mellado et al. / Computer Standards & Interfaces 36 (2014) 711–722
and what the optimal set of security constrains of a determined priority
according to the security risks is in the context of the different scenarios
of the SPL that provides the rationale for the selection. This therefore
supposes a rise in the abstraction level of the variations or variants se-
lection process, and the selection is made in the requirements level
rather than in the design level.

Finally, with the aim of providing a security risk criterion during the
security requirements engineering in SPL engineering at the level of a
particular Actor, we have also added a new entity: ‘Threat’, which has
as attributes (according to the Magerit [12]): ‘Degradation’, ‘Likelihood’,
‘Impact’ and ‘Risk’. We use the definition of threat as a potential cause
of an unwanted incident, whichmay result in harm to a system or orga-
nization [9]. Hence, the assets are exposed to threatswhichmay prevent
the security goals from being achieved. In a SPL, not all threats affect all
assets nor all their security goals, so those which are common and op-
tional have to be identified. To calculate the ‘impact’ of each threat on
the assets, the asset values of each security constraint along with the
‘degradation’ caused by the threat on the assets (whichmust be estimat-
ed by the security risk expert within a range from 0 to 100%) are taken
into account (Impact = round(accumulated value × degradation)).
The impact and the ‘likelihood’ of occurrence or rate of occurrence of
the threat (which must be also estimated by the security risk expert)
are taken into account in order to calculate the ‘risk’ according to a de-
fined formula in Magerit (R(Vi, Fj) = Vi + j − n) [‘R’ is risk, ‘V’ is
asset value, ‘F’ is likelihood]. The risk2 is then classified in a range of 0
to 5 (according to the Magerit [12] scale). So that any estimation of im-
pact and risk are “potential” if no ‘secure plans’ are deployed.

4.4. Secure Tropos process extension

‘Secure Tropos–SPL’ process is an iterative and incremental process,
which is an add-in of activities and tasks that can be incorporated into
2 Risk is an estimate of the degree of exposure to threat to one or more assets causing
damage or prejudice to the organization.
and tailored to an organization's SPL development process model to
provide it with a security requirements engineering approach. It can
therefore be termed as a scalable process since not all the tasks and
steps are required, and developers could create their own lightweight
process by selecting a subset of the steps in each task. We have defined
the key tasks that must be part of each SPL activity, signifying that the
order in which the steps are performed depends on the particular pro-
cess that is established in an organization. The activities and their
tasks can thus be combined with existing development methods.

We have specified these new tasks and activities of the process using
the OMG standard SPEM 2.0 [20]. SPEM is a process meta-model which
is used to describe a concrete software development process or a family
of related software development process. The SPEM specification is
structured as a UML profile, and provides a complete MOF-based
meta-model. This meta-process modelling is a type of metamodelling
used in software engineering to support the effort of creating flexible
process models. The purpose of using process models, and in this case
SPEM, is to document and communicate the ‘Secure Tropos–SPL’ pro-
cess, to enhance its reuse and to facilitate its integration into other pro-
cesses and frameworks. Thus, by using SPEM in the ‘Secure Tropos–SPL’
specification we promote the increment of process engineers' produc-
tivity and the quality of the global models they produce as a result of
the integration of ‘Secure Tropos–SPL’ into the process map of their or-
ganization or company.

In accordance with SPEM, SREPPLine is described by using the struc-
ture shown in Fig. 4. Each activity specifies: WorkProduct as both input
and output respectively; the roles that perform or participate in this
RoleUse activity; the collection of Steps defined for a Task Use that repre-
sents all the work that should be carried out to achieve the overall devel-
opment goal of the Activity; and the Guidance that specifies the practices,
techniques or standards to consider when performing the Task Use.

As shown in Figs. 1 and 5, ‘Secure Tropos–SPL’ is composed of two
activities: the Secure Tropos Domain Requirements Engineering
(STDReq) activity (A1) and the Secure Tropos Application Requirements
Engineering (STAReq) activity (A2).

image of Fig.�2

Fig. 3. Extension to SEGM (‘SEGM–SPL’).

Fig. 4. 'Secure Tropos - SPL' structure using SPEM 2.0.

716 D. Mellado et al. / Computer Standards & Interfaces 36 (2014) 711–722

image of Fig.�3
image of Fig.�4

STDReq
(Secure Tropos Domain Requirements Engineering)

STAReq
(Secure Tropos Application Requirements Engineering)

(Early Requirements
Analysis)

Security Analysis of
System/Application

Environment

(Early Requirements
Analysis)

Security
Analysis of

SPL
Environment

Security Analysis of
System/Application

Sec-Deltas Analysis

System/Application
Security Constrains

Analysis

System/Application
Secure Entities

Analysis

System/Application
Secure Risk Analysis

Variability
Exploitation and

Instantation

(Late Requirements
Analysis)

Security
Analysis of

SPL

SPL Variants
Analysis

SPL Variants
Security

Constrains
Analysis

SPL Variants
Secure Entities

Analysis

SPL Security Risk
Analysis

(Late Requirements
Analysis)

Security-Enhanced
Actor Diagram

Security-Enhanced
Actor Diagram

Security-Enhanced
Goal Diagram

Security-Enhanced
Goal Diagram

Security-Enhanced
Goal Diagram

SPL Stakeholders
Scoping

SPL Security
Constrains
Analysis

SPL Secure
Entities Analysis

Security Risks
Scoping

Actor
Diagram

Goal
Diagram

Security-Enhanced
Actor Diagram

Security-Enhanced
Actor Diagram

Security-Enhanced
Actor Diagram

Security-Enhanced
Actor Diagram

Security-Enhanced
Goal Diagram

Security-Enhanced
Goal Diagram

Security-Enhanced
Goal Diagram

Security-Enhanced
Goal Diagram

Security-Enhanced
Goal Diagram

Security-Enhanced
Goal Diagram

Fig. 5. ‘Secure Tropos–SPL’ process overview.

717D. Mellado et al. / Computer Standards & Interfaces 36 (2014) 711–722
4.4.1. Secure Tropos domain requirements engineering–(STDReq)
Themain aimof this activity is the development of common and var-

iable security requirements and related security artefacts of the SPL. The
details of this activity are shown in Table 1.
4.4.2. Secure Tropos application requirements engineering–(STAReq)
The main aim of this activity is the elicitation and documentation

of the security requirements and their related security artefacts in
the SPL application and reusing the security domain artefacts and

image of Fig.�5

Table 1
STDReq activity specified with SPEM (OMG).

TaskUse: A1.1 - Security Analysis of Software Product Line
Environment

ProcessPerformer {kind: primary}

RoleUse: Product line manager {kind: in}
RoleUse: Business domain experts {kind: in}
RoleUse: Security requirements engineer {kind: in}
RoleUse: Security expert {kind: in}
RoleUse: Security architect {kind: in}
RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}
WorkProductUse: Stakeholder needs
WorkProductUse: Existing products of the domain
WorkProductUse: Business goals
WorkProductUse: Goal model (Tropos)
WorkProductUse: Organisation security policy
WorkProductUse: Law and regulations
WorkProductUse: Requests for additional / altered security

constrains

WorkDefinitionParameter {kind: out}
WorkProductUse: List of common goals of the SPL {state: initial}
WorkProductUse: Security Enhanced Actor Diagram of the SPL –

‘SEAM-SPL’ {state: initial}
WorkProductUse: Security Enhanced Goal Diagram of the SPL –

‘SEGM-SPL’ {state: initial}
WorkProductUse: Table with the Security Risks of the SPL {state:

initial}

Steps
Step: A1.1.1 SPL stakeholders scoping

Step: A1.1.1.1 Identify common actors of the SPL
Step: A1.1.1.2 Analyze the requests for additional /

altered common goals
Step: A1.1.2 SPL security constrains analysis

Step: A1.1.2.1 Identify common goals
Step: A1.1.2.2 Identify security constrains
Step: A1.1.2.3 Security constraint modelling

Step: A1.1.3 SPL secure entities analysis
Step: A1.1.3.1 Identify security considerations imposed by
the environment of the SPL
Step: A1.1.3.2 SPL secure entities and secure capability

modelling
Step: A1.1.4 Security risk scoping

Step: A1.1.4.1 Common assets valuation
Step: A1.1.4.2 Common threats identification and

calculation of degradation, likelihood and
impact of each threat

Step: A1.1.4.3 Common risks assessment
Step: A1.1.4.4 Perform a security balance analysis of

the SPL
Step: A1.1.5 Inspect ‘SEAM-SPL’ and ‘SEGM-SPL’ models

Guidance
Guidance {kind: Practice}: Questionnaire
Guidance {kind: Practice}: Interviews
Guidance {kind: Practice}: Meetings
Guidance {kind: Practice}: Application goals matrix
Guidance {kind: Practice}: Security constraint modelling (Secure

Tropos)
Guidance {kind: Practice}: Secure entities modelling (Secure

Tropos)
Guidance {kind: Practice}: Secure capability modelling (Secure

Tropos)
Guidance {kind: Checklist}: Organization policy, laws and standards

Activity {kind = Phase}: Domain Requirements Engineering
Process: Secure Tropos – SPL

Activity {kind = Iteration}: Secure Tropos Domain
Requirements Engineering (STDReq) – (A1)

TaskUse: A1.2 - Security Analysis of Software Product Line

ProcessPerformer {kind: primary}

RoleUse: Product line manager {kind: in}
RoleUse: Business domain experts {kind: in}
RoleUse: Security requirements engineer {kind: in}
RoleUse: Security expert {kind: in}
RoleUse: Security architect {kind: in}
RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}
WorkProductUse: Stakeholder needs of each variant
WorkProductUse: ‘SEAM-SPL’
WorkProductUse: ‘SEGM-SPL’
WorkProductUse: Organisation security policy for each variant
WorkProductUse: Law and regulations for each variant
WorkProductUse: Requests for variant goals & security goals

WorkDefinitionParameter {kind: out}
WorkProductUse: Security Enhanced Actor Diagram of the SPL

– ‘SEAM-SPL’ {state: initial}
WorkProductUse: Security Enhanced Goal Diagram of the SPL

– ‘SEGM-SPL’ {state: initial}
WorkProductUse: Table with the Security Risks of all the

variants of the SPL {state: initial}

Steps
Step: A1.1.1 SPL variants analysis

Step: A1.1.1.1 Identify and model actors which are variants
Step: A1.1.1.2 Analyze the requests for variant goals &

security goals
Step: A1.1.2 SPL variants security constrains analysis

Step: A1.1.2.1 Identify and model variant goals
Step: A1.1.2.2 Identify variant security constrains for each goal
Step: A1.1.2.3 Security constraint variability modelling

Step: A1.1.3 SPL variants secure entities analysis
Step: A1.1.3.1 Identify security considerations imposed by

each variant of the SPL
Step: A1.1.3.2 SPL secure entities variability and secure

capability modelling
Step: A1.1.4 SPL Security risk scoping

Step: A1.1.4.1 Variant assets valuation
Step: A1.1.4.2 Variant threats identification and

calculation of degradation, likelihood and
impact of each threat

Step: A1.1.4.3 SPL risks assessment (common & variant
elements)

Step: A1.1.4.4 Perform a security balance analysis of
all the variants of the SPL

Step: A1.1.5 Inspect ‘SEAM-SPL’ and ‘SEGM-SPL’ models

Guidance
Guidance {kind: Practice}: Questionnaire
Guidance {kind: Practice}: Interviews
Guidance {kind: Practice}: Meetings
Guidance {kind: Practice}: Application goals matrix
Guidance {kind: Practice}: Security constraint modelling (Secure Tropos)
Guidance {kind: Practice}: Secure entities modelling (Secure Tropos)
Guidance {kind: Practice}: Secure capability modelling (Secure Tropos)
Guidance {kind: Checklist}: Organization policy, laws and standards

Activity {kind = Phase}: Domain Requirements Engineering
Process: Secure Tropos – SPL

Activity {kind = Iteration}: Secure Tropos Domain
Requirements Engineering (STDReq) – (A1)

718 D. Mellado et al. / Computer Standards & Interfaces 36 (2014) 711–722
requirements as far as possible. The details of this activity are depicted
in Table 2.
5. Example of application

A simple and short example related to health and social care SPL is
outlined in this section in order to describe and show throughout the
example the applicability of our proposed extension of Secure Tropos
for SPL engineering (named ‘Secure Tropos–SPL’).

Details of the organization in which the case study presented herein
was carried out will not be provided for reasons of confidentiality and
the potential threat to its security aswell as security technical details re-
lated to the project. Moreover, all the information regarding the infor-
mation systems mentioned in this case study have been previously
published in various public forums.

Table 2
STAReq activity specified with SPEM (OMG).

TaskUse: A2.1 - Security Analysis of System / Application
Environment

ProcessPerformer {kind: primary}

RoleUse: Product line manager {kind: in}
RoleUse: Expert users {kind: in}
RoleUse: Security requirements engineer {kind: in}
RoleUse: Security expert {kind: in}
RoleUse: Security architect {kind: in}
RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}
WorkProductUse: Stakeholders of the application needs
WorkProductUse: Security Enhanced Actor Diagram of the SPL –

‘SEAM-SPL’
WorkProductUse: Security Enhanced Goal Diagram of the SPL –

‘SEGM-SPL’
WorkProductUse: Application specific environment, policies and

regulations

WorkDefinitionParameter {kind: out}
WorkProductUse: List of common goals of the SPL {state: initial}
WorkProductUse: Security Enhanced Actor Diagram of the

Application – ‘SEAM-SPL’ {state: initial}
WorkProductUse: Security Enhanced Goal Diagram of the

Application – ‘SEGM-SPL’ {state: initial}
WorkProductUse: Application’s stakeholder goals that do not

correspond to domain goals {state: initial}

Steps
Step: A2.1.1 Variability exploitation and instantation

Step: A2.1.1.1 Define security goals of the application
Step: A2.1.1.2 Communicate the relevant variants to the

stakeholders of the application
Step: A2.1.1.3 Inherit common variants and analyze

alternative and optional variants
Step: A2.1.1.4 Select the appropriate variants and model

the chosen variants: security constraint
modelling, secure entities modelling and
secure capability modelling

Step: A2.1.1.4 Collect the application’s stakeholder goals
that do not correspond to domain goals

Guidance
Guidance {kind: Practice}: Interviews
Guidance {kind: Practice}: Meetings
Guidance {kind: Practice}: Security constraint modelling (Secure

Tropos)
Guidance {kind: Practice}: Secure entities modelling (Secure

Tropos)
Guidance {kind: Practice}: Secure capability modelling (Secure

Tropos)
Guidance {kind: Checklist}: Application specific policy, laws and

standards

Activity {kind = Phase}: Domain Requirements Engineering
Process: Secure Tropos – SPL

Activity {kind = Iteration}: Secure Tropos Domain
Requirements Engineering (STDReq) – (A2)

TaskUse: A2.2 - Security Analysis of System / Application

ProcessPerformer {kind: primary}

RoleUse: Product line manager {kind: in}
RoleUse: Business domain experts {kind: in}
RoleUse: Security requirements engineer {kind: in}
RoleUse: Security expert {kind: in}
RoleUse: Security architect {kind: in}
RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}
WorkProductUse: Stakeholder needs of each variant
WorkProductUse: ‘SEAM-SPL’ of the application
WorkProductUse: ‘SEGM-SPL’ of the application
WorkProductUse: Organisation security policy for each variant
WorkProductUse: Law and regulations for each variant
WorkProductUse: Requests for variant goals & security goals

WorkDefinitionParameter {kind: out}
WorkProductUse: Security Enhanced Actor Diagram of the

application – ‘SEAM-SPL’ {state: initial}
WorkProductUse: Security Enhanced Goal Diagram of the

application – ‘SEGM-SPL’ {state: initial}
WorkProductUse: Table with the Security Risks of the

application {state: initial}

Steps
Step: A2.1.1 Sec-deltas analysis

Step: A1.1.1.1 Identify sec-deltas
Step: A2.1.2 System/application security constrains analysis

Step: A1.1.2.1 Application security constraint variability
modelling

Step: A2.1.3 System/application secure entities analysis
Step: A1.1.3.1 Identify security considerations imposed by

the needs of the application
Step: A1.1.3.2 SPL Application secure entities variability and

secure capability modelling
Step: A2.1.4 System/application security risk scoping

Step: A1.1.4.1 Application assets valuation
Step: A1.1.4.2 Application threats identification and

calculation of degradation, likelihood and
impact of each threat

Step: A1.1.4.3 Application risks assessment
Step: A1.1.4.4 Perform a security balance analysis of

the application
Step: A2.1.5 Inspect ‘SEAM-SPL’ and ‘SEGM-SPL’ models of the

application

Guidance
Guidance {kind: Practice}: Interviews
Guidance {kind: Practice}: Meetings
Guidance {kind: Practice}: Security constraint modelling (Secure Tropos)
Guidance {kind: Practice}: Secure entities modelling (Secure Tropos)
Guidance {kind: Practice}: Secure capability modelling (Secure Tropos)
Guidance {kind: Checklist}: Application specific policy, laws and

standards

Activity {kind = Phase}: Application Requirements Engineering
Process: Secure Tropos – SPL

Activity {kind = Iteration}: Secure Tropos Application
Requirements Engineering (STAReq) – (A2)

719D. Mellado et al. / Computer Standards & Interfaces 36 (2014) 711–722
Wewill apply our approach to specify the security requirements of a
software product line of a CRM (Customer Relationship Management)
system, which may have several different configurations for three dif-
ferent public institutions of the public social security system of Spain.
Therefore, we will characterize the system, named eCRM, as a SPL
whose members vary by system configuration yet retain the same
core functionalities. Obviously, this case study has to be simplified and
summed up to enable points of our approach to be easily illustrated in
this paper.

Graphically, as shown in Figs. 6, 7 and 8, in the SEAD (Security
Enhanced Actor Diagram) and SEGD (Security Enhanced Goal Dia-
gram) the ‘Variability Dependencies’ are represented with ‘ V’ over
the dependency that joins the entities, so that the tip of the triangle indi-
cates the “owner” of the variant, i.e. ‘Depender’ or ‘Dependee’. In addition, if
an entity is a ‘Variation’, it is depicted with a ‘(V)’ within the representa-
tion of the entity. The Secure Tropos entities are represented in thefigures
as follow: an actor with a circle; a goal with rounded rectangle; a security
constraintwith an octagon; a planwith a hexagon; a resourcewith a rect-
angle; and a threat with a pentagon.

Fig. 6 shows a SEAD at the Late Requirements phase, which identifies
and analyses the actors of the SPL and its environment. It also models
the SPL's business goals, at business and service level, as well as it illus-
trates the analysis of the variability dependencies of these goals. This
means that it supports the modelling of the variability of the goals,

Fig. 6. Part of the SEAD of eCRM (SPL)–(Late Requirements phase).

720 D. Mellado et al. / Computer Standards & Interfaces 36 (2014) 711–722
specifying the variant goals as common, optional or alternative. As shown
in Fig. 7, the actor ‘eCRM (SPL)’ has strategic goals and intentions. In this
example, the ‘eCRM(SPL)’has a common service goal to citizens: “Provide
general information about social security issues” and two optional service
goals: “Provide the status of a citizen's benefit” and/or “Manage the allo-
cation account contribution to the Social Security”. In order to deal with
the security issues, security constrains are introduced along with the var-
iability dependencies. Security constrains, such as those shown in the
model (“Keep data available”, “Keep financial data privacy” and “Keep
benefit data privacy”), represent restrictions related to security that the
SPL must have and instantiated products must respect.

Fig. 7 illustrates a SEAD at the Late Requirements phase, which
models the instantiation of applications from a SPL. In particular, the
model represents two applications (eCRM-I and eCRM-II) instantiated
from ‘eCRM (SPL)’, both of which inherit the common goals, constraints,
plans and resources. Each application inherits the common business
Fig. 7. Part of the SEAD of the instantiated application
goals from the SPL and the stakeholders of each application choose the
optional business goals by exploiting the variability of the eCRM(SPL).

Furthermore, the SEGD shown in Fig. 8 allows a deeper understand-
ing of how the SPL reason about goals to be fulfilled, plans to be per-
formed and availability of resources. It completes the SEAD with the
reasoning that each actormakes about its internal goals and constraints,
plans and resources. It can be seen that each variant business goal,
which is restricted by a constraint, has related secure goals, which satis-
fy the constraint by means of secure plans that need resources.

Finally, through the entity ‘Variation’ of the SEGM it is possible to trace
the entities which are part of an instantiated application from the SPL.
Hence, bymeans of this entity of the SEGMwe can identify that for the in-
stantiated application eCRM-I, the secure variant entities that are part of it
are: the resource ‘Benefit database’; the secure goals ‘System privacy en-
sured’ and ‘User authenticity ensured’; the secure plans related to these
secure goals ‘Crypto protocol’ and ‘User authentication’.
s of the eCRM (SPL)–(Late Requirements phase).

image of Fig.�7

Fig. 8. Part of the SEGD of eCRM(SPL)–(Late Requirements phase).

721D. Mellado et al. / Computer Standards & Interfaces 36 (2014) 711–722
6. Conclusions and future work

A large number of goal-oriented requirements engineering ap-
proaches have been proposed in the literature, which focus on eliciting
security requirements. However, most of these approaches provide lit-
tle help as how security requirements can be elicited and modelled in
the context of SPL, at both the social and technical dimension, along
with the fact that many standard requirements engineering practices
must also be appropriately tailored to the specific demands of SPL [3].

This paper introduces the foundations of an approach that fills this
gap by proposing SecureTropos-SPL, an extension to Secure Tropos to
support SPL. The contribution of this work is that of: explaining how
SPL concepts are alignedwith Secure Tropos concepts; the presentation
of a risk-driven goal-based process as a redefinition of the Secure Tropos
process for SPL engineering; and an extension of Secure Tropos
metamodel and language to support ‘variability’modelling and ‘risk’ el-
ements. Hence, by means of this approach it is possible to elicitate and
analyse both social and technical security requirements from the early
stages of the SPL development process based on security goals and fol-
lowing a security risk criterion.

As future work, we plan to provide appropriate tool support to
our approach. This will enable us to apply our work to large and
complex case studies and explore its integration with relevant
design-level proposals (such as UMLSec in [18]) to facilitate the se-
cure design of SPL.

Acknowledgements

This research is part of the following projects: SIGMA-CC
(TIN2012-36904) and GEODAS (TIN2012-37493-C03-01) financed
by the "Ministerio de Economía y Competitividad" (Spain).
References

[1] J.L. Arciniegas, J.C. Dueñas, J.L. Ruiz, R. Cerón, J. Bermejo, M.A. Oltra, Architecture rea-
soning for supporting product line evolution: an example on security, in: T. Käkölä,
J.C. Dueñas (Eds.), Software Product Lines: Research Issues in Engineering and Man-
agement, Springer, 2006.

[2] J. Bayer, S. Gerard, O. Haugen, J. Mansell, B. Moller-Pedersen, J. Oldevik, P. Tessier,
J.-P. Thibault, T. Widen, Consolidated product line variability modeling, in: T.
Käkölä, J.C. Dueñas (Eds.), Software Product Lines: Research Issues in Engineering
and Management, 2005, pp. 195–241.

[3] A. Birk, G. Heller, Challenges for requirements engineering andmanagement in soft-
ware product line development, International Conference on Requirements Engi-
neering (REFSQ 2007), 2007, pp. 300–305.

[4] J. Bosh, Design & Use of Software Architectures, Pearson Education Limited, 2000.
[5] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A. Perini, Tropos: agent-

oriented software development methodology, J. Agent. Multi. Agent. Syst. (2004)
203–236.

[6] P. Clements, L. Northrop, Software product lines: practices and patterns, SEI Series in
Software Engineering, Addison-Wesley, 2002.

[7] B. Fabian, S. Gürses, M. Heisel, T. Santen, H. Schmidt, A comparison of security re-
quirements engineering methods, Requir. Eng. 15 (2009) 7–40.

[8] T.E. Faegri, S. Hallsteinsen, A software product line reference architecture for security,
in: T. Käkölä, J.C. Dueñas (Eds.), Software Product Lines: Research Issues in Engineering
and Management, Springer, 2006.

[9] ISO/IEC, ISO/IEC 13335 Information Technology – Security Techniques –Management
of Information and Communications Technology Security, 2004.

[10] K. Kang, S. Cohen, J.A. Hess, W.E. Novak, S.A. Peterson, Feature-Oriented Domain Anal-
ysis (FODA) Feasibility Study, Software Engineering Institute, Carnegie-Mellon Univer-
sity, 1990.

[11] J. Kim, M. Kim, S. Park, Goal and scenario bases domain requirements analysis envi-
ronment, J. Syst. Softw. (2005) 926–938.

[12] M.A.P., Methodology for Information Systems Risk Analysis and Management
(MAGERIT version 2), Ministry for Public Administration of Spain, 2005.

[13] J.D. McGregor, Testing a Software Product Line, in: P. Borba, et al., (Eds.), Testing
Techniques in Software Engineering, Springer, 2010, pp. 104–140.

[14] D. Mellado, C. Blanco, L.E. Sanchez, E. Fernández-Medina, A systematic review
of security requirements engineering, Comput. Stand. Interfaces 32 (2010)
153–165.

[15] D. Mellado, E. Fernández-Medina, M. Piattini, Security requirements engineering
framework for software product lines, Inf. Softw. Technol. 52 (2010) 1094–1117.

http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0040
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0040
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0040
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0040
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0045
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0045
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0045
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0045
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0050
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0050
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0050
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0055
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0060
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0060
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0060
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0065
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0065
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0015
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0015
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0070
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0070
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0070
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0075
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0075
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0080
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0080
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0080
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0085
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0085
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0090
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0090
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0095
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0095
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0020
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0020
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0020
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0025
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0025
image of Fig.�8

722 D. Mellado et al. / Computer Standards & Interfaces 36 (2014) 711–722
[16] D. Mellado, H. Mouratidis, Towards the extension of Secure Tropos language to sup-
port software product lines development, International Workshop on Security in In-
formation Systems (WOSIS-2012), 2012, (accepted).

[17] H. Mouratidis, Secure Tropos: an agent oriented software engineering methodology
for the development of health and social care information systems, Int. J. Comput.
Sci. Secur. 3 (3) (2009) 241–271.

[18] H. Mouratidis, J. Jürjens, From goal-driven security requirements engineering to se-
cure design, Int. J. Intell. Syst. 25 (8) (2010) 813–840.

[19] OECD, The promotion of a culture of security for information systems and networks
in OECD countries, DSTI/ICCP/REG(2005) 1/FINAL, Organisation for Economic
Co-operation and Development, 2005.
[20] OMG, Software & Systems Process Engineering Meta-Model Specification v. 2.0.
2008, http://www.omg.org/spec/SPEM.

[21] K. Pohl, G. Böckle, F.v.d. Linden, Software Product Line Engineering. Foundations,
Principles and Techniques, Springer, Berlin Heidelberg, 2005.

[22] K. Schmid, I. John, A customizable approach to full-life cycle variability management,
Science of Computer Programming, 53, Elsevier, 2004. 259–284.

[23] K. Schmid, K. Krennrich, M. Eisenbarth, Requirements Management for Product
Lines: A Prototype, Fraunhofer IESE, 2005.

[24] M. Sinnema, S. Deelstra, J. Nijhuis, J. Bosch, COVAMOF: a framework for modeling
variability in software product families, Proc. of the Third Softw. Product Line Conf,
SPLC, Boston, MA, USA, 2004.

http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0100
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0100
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0100
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0030
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0030
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0030
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0035
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0035
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0105
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0105
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0105
http://www.omg.org/spec/SPEM
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0115
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0115
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0120
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0120
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0125
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0125
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0130
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0130
http://refhub.elsevier.com/S0920-5489(13)00180-3/rf0130

	Secure Tropos framework for software product lines requirements engineering
	1. Introduction
	2. Secure Tropos and software product lines requirements engineering basics
	2.1. Overview of Secure Tropos
	2.2. Software product lines requirements engineering basics

	3. Related work
	4. SecureTropos-SPL: Secure Tropos framework for software product lines
	4.1. Overview of our approach
	4.2. Aligning Secure Tropos with SPL concepts
	4.3. Secure Tropos metamodel and language extension
	4.4. Secure Tropos process extension
	4.4.1. Secure Tropos domain requirements engineering–(STDReq)
	4.4.2. Secure Tropos application requirements engineering–(STAReq)

	5. Example of application
	6. Conclusions and future work
	Acknowledgements
	References

